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We present a new approach to the calculation of first passage statistics for 
correlated random walks on one-dimensional discrete systems. The processes 
may be non-Markovian and also nonstationary. A number of examples are used 
to demonstrate the theory. 
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sluggish walker. 

1. I N T R O D U C T I O N  

Correlated walks on discrete lattices are useful in describing a number of 
physical phenomena. (1) The correlations arise when the direction of a step 
taken by the walker depends on the direction of the immediately preceding 
step. In an ordinary random walk these steps are independent. Examples of 
physical phenomena where such correlations may be important include 
polymer growth by sequential addition and deletion of single monomers: if 
growth occurs when there is a local monomer excess, then the addition of 
one monomer is likely to be followed by the further addition of another. 
Similarly, if a monomer detaches from the chain where there is a local 
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monomer deficit, then there is a tendency for another monomer to detach. 
Another example involves a population with births and deaths: a net 
growth might indicate a healthy population in which the trend for 
subsequent growth follows as a manifestation of continued health. A net 
decrease might indicate an unhealthful population whose tendency is then 
to continue decreasing. A third example is biased flow through a branched 
structure: the walker must continue walking in a specified direction until it 
reaches a vertex. At that point a new direction can be chosen but must be 
retained until the walker encounters the next vertex. Finally, we may 
simply be interested in a random walker who has a tendency to continue 
walking in a given direction or a tendency to reverse directions. 

A number of approaches have been developed recently to deal with 
correlated walks. (2'3) Herein we present a new point of view which has a 
number of advantages over other methods. Our approach generalizes 
methods developed by us for continuous processes (4~5) and is able to handle 
non-Markovian multivalued noise. We are particularly interested in the 
calculation of the statistics of first arrival of the walker at a prescribed site 
N. (6) In the polymer example, N represents a given length at which a par- 
ticular event occurs (e.g., detachment from a surface). In the population 
example a size N might necessitate the design of new food supplies. In the 
case of the biased flow N may represent the edge of a fluidized bed. 

In Section 2 we discuss a correlated nearest neighbor random walk 
and find that the mean first passage time out of an interval depends 
quadratically on the length of the interval I-see Eq. (2.24)]. In Section 3 we 
consider a unidirectional walker who can either move in one direction or 
stand still. Our walker becomes more "sluggish" as it moves, and we find a 
mean first passage time out of an interval that may depend algebraically 
[Eq. (3.29)] or even exponentially [Eq. (3.21)] on the interval length, 
depending on the slowing-down tendencies of the walker. In Section 4 we 
present a prescription for dealing with non-nearest neighbor correlated 
walks. We end with a short discussion in Section 5. 

2. C O R R E L A T E D  N E A R E S T - N E I G H B O R  R A N D O M  W A L K  

Consider a random walker on a chain of sites denoted by the integer 
index /. The walker can take steps to the right or to the left and can also 
remain at a given site. The steps can be of length 0, 1, 2,..., m; steps to the 
right (left) are labeled by positive (negative) integers. The probability that 
n consecutive steps of type k [-i.e., in direction sgn(k) and of length ]k] ] are 
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taken is 0k(n). In an ordinary random walk k = 1 or - 1 and 0k(n) = 1/2. 
In a correlated walk of the familiar sort (2'3~ k = l  or - 1  and 
Ok(n) = (1 --;~) y~ 1 for n ~> 1 with y > 1/2 (y < 1/2) if there is a tendency to 
retain (reverse) a given direction. We can deal with multiple values of Ikl 
and with more general (even history-dependent) forms of Ok(n), i.e., the 
walk need not be a renewal process (see Section 3). 

We concentrate on the calculation of the statistics of first arrival or 
crossing of a particular site l =  N. (6~ For  some applications arrival at or 
crossing of two sites (e.g., l =  0 or l =  N) is of interest, and we shall deal 
with this case as well. For  example, a population becoming extinct or a 
population reaching a critical size each corresponds to crossing of a given 
site. On the other hand, a random walk on a chain with traps at either end 
is a two-site crossing problem. 

We introduce in this section a method that is particularly suited to 
walks having two possible values of k, e.g., k = + 1 or k = 0, 1. This encom- 
passes ordinary and correlated nearest neighbor random walks and is a 
discrete analogue of the continuous dichotomous noise process discussed 
elsewhere. (4~ Walks with multiple values of k (i.e., an analogue of our 
earlier multistate continuous process (5~) are considered in Section 4. 

Consider, then, a nearest neighbor random walker on a chain and 
suppose the walk starts at l o with - M  < lo < N. The position of the walker 
after n steps is related to its position after n - 1  steps via the stochastic 
difference equation 

l~=l~_~ + g~ (2.1) 

where gn is a random variable that can take on the values + 1. In an 
ordinary random walk the subsequent value of g is unrelated to its 
previous value, i.e., gn is independent of gn_ 1. The probability of a "run" of 
p consecutive equal realizations of g (e.g., the probability of an ordinary 
random walker taking p consecutive steps to the right) is 0 _+ I ( P ) =  (1/2) p. 
In a correlated random walk this probability is replaced by an arbitrary 
one Ok(P) that can build in a tendency to continue walking in a given 
direction or to reverse direction. 

Suppose that the walker begins its walk toward the right and takes nl 
steps in that direction, i.e., gl = g 2  . . . . .  gnl = 1. It  then reverses direc- 
tions and takes n2 steps to the left. A further reversal occurs and it again 
walks to the right, this time n 3 steps, and so on. The position of the walker 
after n steps is then as follows: 

822/53/1-2-14 
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In = 

lo + n, 

O<.n<.nl 

l o + n l - - ( n - - n 1 ) ,  

nl <~n<~nl +n2 

lo +hi  - n 2  + (n - n  1 - n2), 

El 1 +1" l  2 4 t'1 ~ gl I "-~- Fl 2 + t'l 3 

lo + nl - -n2 + n 3 - - ( n - - n  1 - n 2 - n 3 ) ,  

n 1 + n 2 + n  3 <<.n<~nl + n 2 + n 3 + n  4 

z 

l o + n l - - n 2 . . .  + _ n j _ l T ( n - - n  1 . . . . .  n j_l)  , 

n l +  -.. + n j _ l  <~n<~n1+ ... +nj  

(2.2) 

where the upper (lower) sign in the last general expression is for j odd 
(even). The time intervals ni are random variables governed by the 
probabilities ~l(ni) for odd i and ~p_l(ni) for even i. 

We wish to calculate the probabilityfu(n[lo) that the walker first exits 
the interval I - - M +  1, N -  1] through N and that it does so on the nth 
step. Together with the corresponding probability f_M(n!lo)  for exiting at 
- M ,  we can then achieve our ultimate goal of calculating the mean 
number of steps ff (mean first passage time) for the walker to be trapped at 
sinks located at N and - M :  

if= ~ nEfu(nJlo)+ f_~t(nl lo)  ] (2.3) 
n ~ 0  

(for a semi-infinite interval we can set M or N to infinity). To construct 
f~(nllo),  we call each sequence of equal values of g,  an "interval" and we 
define the auxiliary probability pj(nllo) to be the probability that first 
passage to N or - M  occurs during the j t h  interval on the nth step. 
Clearly, 

fu(nl lo)  = ~ Pzj+,(nJ/o) (2.4) 
j = 0  

while f--M is the sum over even interval index. The probabilities ps(nllo) 
can be constructed directly from the possible trajectories of the walker. To 
see how this is done, consider the explicit trajectory (2.2). During the first 
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interval the walker will not step_ on site N if lo + nl < N. The probability for 
this to be the case is 

N lo -- 1 

Prob(nl < N - 1 0 )  = Y, tPl(nl) (2.5) 
n i =  1 

Not crossing - M  during the second interval depends on the condition 
lo + n~ - n2 > - M ,  which in turn has the probability 

Prob(n2 < M + I  o + n l ) =  
M + l o + n l - - I  

y, O_~(n2) (2.6t 
n 2 =  1 

of being true. The pattern for writing the probability that there is no 
crossing in subsequent intervals up to the 2jth should be clear. Crossing of 
l = N  during the ( 2 j + l ) t h  interval is assured if ln2j+~>~N, and the 
probability for this event to occur is 

Prob(n2j+ ~ > N - l o - n l  +n= . . . .  +nz f l=  
n2j+l = N -  l o - -n l  + . . .  +n2)  

(2.7) 

Trapping on the nth step of the (2j + 1)th interval requires that 

where 

In = lo + nl - n2 -+- . . . .  nzj+ A2j = N (2.8) 

A j -  = n -  (nl + n 2 +  . . '  +nj)  (2.9) 

Combining these step-by-step probabilities leads to the expression 

N - - l o - - 1  N + l o + n l - - 1  N l o - - n l + n 2 - - 1  

P2++~(nl/o) = 2 O~(nl) ~ O_~(n2) ~ O~(n3) 
n l ~ l  n 2 - - 1  n 3 = l  

N + l o + n l - - n 2 +  . . .  + n 2 ) _  1 1 

• "" Z O_~(n=j) 
/72]= 1 

x ... ~ ~Ol(n=j+ l) (2.10) 
n2)+l : N  / 0 - - h i  + - . .  -i-n2] 

to 
It is convenient to define a step-number generating function according 

/~J(U]lo) = k unpj(nllo) (2.11) 
n = 0  



208 de la Selva et  al. 

The mean first passage time (2.3) that we seek is related to this generating 
function in a particularly simple way: 

d ~ lo ) ~i(ul (2.12) 
/~ ~ d--uu j =  1 u = l  

Inspection of the appropriate transform of (2.10) leads to the recursion 
relation 

N-- lo 1 

102J+ 1( lg]/0) = 2 
nl= 1 

for j > 1, with 

N + l o + n  I 1 

01(/71) 2 
n2= 1 

O_l(n2) ~2j_1(ullo) (2.13a) 

/~l(U [ lo) = k 0 1 ( n l )  U N tO (2.13b) 
n l = N - - I  0 

to begin the sequence. A sum of (2.13a) over j leads to a recursion relation 
for 

K N ( U [  l o )  ~ ~ ,  ]J2j+ I(U[ 10) (2 .14)  
j=O 

A similar sequence of steps can be followed for trapping at - M ,  ending 
with a recursion relation for the sum 

K_M(u]lo) = ~ P2j(ullo) (2.15) 
j = l  

For trapping at N or - M  it is the sum of these two functions which is of 
interest, 

K(uflo) = KN(Utlo) + K M(u]/o) (2.16) 

since (2.12) then implies that 

d lo) = -~u K(u I (2.17) 
u = l  

The equation satisfied by K(uJlo) is 

K(u Ilo) = / h ( u  I lo) + P2(ul lo) 
N-- Io  ! N + l o + n l - - 1  

+ 2 E 
nI = 1 n2 ~ 1 

01(rtl) 0 -1(n2) u"X+"2K(ul lo + nl -- n2) 

(2.18) 
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with/~1 given by (2.13b) and 

N -- l0 l 
/~2(u L/o) = ~ ~ Ol(nl)O_l(nz)u u+t~ (2.19) 

n l ~ l  n2=N+lo+nl 

Solving (2.18) and inserting the solution in (2.17) formally solves the 
problem. 

To carry the calculation further, we must assume a particular form for 
the persistence function 0k(n). We choose the form for which the random 
variable g,  in Eq. (2.1) is a Markov process: 

0k(n) = (1 - 7~) 7~- 1, n >~ 1 (2.20) 

For simplicity we choose 71=7 1 -7 ,  i.e., the walker has the same 
persistence to the right and to the left. As mentioned earlier, 7=  1/2 
corresponds to an ordinary random walk. The form (2.20) in (2.18) leads 
to the solution 

J'rM+'~ --#7/r) r--M--'~ uTr) 
K(u Ilo) u(1-7) u(1-7) 

[rM+N-  r-M-N+ 1]-~ 
• 

where 

rlo--N+l+rN l o - i }  

1 

(2.21) 

1 {[ 1 ]E(  1  1 '2u)2411J2t (1 -7 )2  u - 7u§ (2.22) 
r = ~ 7u -~ 7 u 7 7u 7 

Recall that the evaluation of (2.21) assumed that the walker began its 
walk from lo toward the right. To restore the more natural initial symmetry 
according to which the first step is to the right or left with respective 
probabilities of 1/2 one should replace (2.17) with 

l d  
n=2du [K(utl~ K(uLN--M--l~ (2.23) 

We finally obtain for the mean first passage time to N or - M  the result 

= ( N -  lo)(lo + M) 1 - 7  + ( N +  M) 27 - 1  (2.24) 
7 27 

This is precisely the discrete analogue of Eq. (26) of the first citation in 
ref. 4. The first (quadratic) term reduces to the usual random walk 
contribution when 7 = 1/2: 

~ ~ (N-lo)(lo+M) (2.25) 
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The contribution of the quadratic term grows in importance with decreas- 
ing 7, i.e., when the walker has an enhanced tendency to continually change 
its direction of motion. When 7 =  1, on the other hand, the motion is 
"ballistic" and hence linear in the length of the interval: 

N + M  
~= ~ , ~ (2.26) 

In general the motion is a combination of diffusive and ballistic con- 
tributions whose relative importance depends on 7. 

We end this section by noting that our method is not restricted to the 
form (2.20) for the persistence function, and it is in this sense that our 
approach is more general than previous ones. Other forms were considered 
explicitly in the continuum case. (4'5) 

3. AN I N C R E A S I N G L Y  M O R E  S L U G G I S H  W A L K E R  

Consider the following walk, in one way simpler and in another more 
complicated than the correlated walker of the previous section. As in a 
cromatography column or in an appropriate gradient, the walker can either 
proceed in only one direction (say, to the right) or sit still, i.e., k = 0 or 1. 
This aspect of the walk is simpler than that of Section 2. However, here we 
allow the persistence functions describing the number of steps (time units) 
that the walker moves or sits still to depend on the irlterval j. This non- 
stationary aspect is more complicated than the previous examples, and the 
walk ceases to be a renewal process. In particular, we will consider the case 
in which the walker becomes increasingly more sluggish. With the forms 

~lj(n) = (1 - 71j) 7'~g 1 (3.1) 

and 

Ooj (n )=( l -7o j )7~ j  ' (3.2) 

(0 < 7u< 1) this can be accomplished by having 7,j increase with j (greater 
tendency to stop) and 7oj decrease with j (greater tendency to remain still). 
A moving particle that picks up additional mass as it goes along might 
behave in this fashion. 

With no loss of generality we set l o - 0  and calculate the mean first 
passage time ~ to l = N .  In particular, we will obtain the asymptotic 
N dependence of fi for large N. We assume that the walker initially begins 
by walking (rather than sitting still) at n = 0 (this condition can be relaxed 
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and does not affect our results). The position of the walker as a function of 
step number is then as follows: 

/'/, 

O ~ n ~ n l  

FII ~ 

nl <<. n <~ nl + n2 

n l + ( n - n l - - n 2 ) ,  

nl + nz <<. n <~ nl +n2 +n3 

1,= n l + n 3 ,  (3.3) 

nl + n 2 + n 3 ~ n ~ n l  + n z + n 3  +n4  

n l + n 3 +  --. +n2j_ l ,  

n l + n 2 +  "'" +nzj_ l<<.n<~nl+ . . .  +nzj 

H - -  H 2 - -  H 4 . . . . .  g/2j~ 

n l + n 2 +  "'" + n 2 j < < . n ~ n l + n 2 +  "" +n2j+l 

The probability that the walker first encounters N on the nth step 
during the (2j + 1)th interval is 

N - - 1  

P 2 j + l ( Y l ) = ( 1 - - 6 J ,  O) E I / /11(? ' /1 t  ~ 0 0 2 ( / ' / 2 /  
nl = 1 n 2 = 1 

N h i -  1 

2 0 1 3 ( / ' / 3 )  ~ 0 0 4 ( / " / 4 )  
n3 = i n 4 = 1 

n 2 j = l  n2j + l = N - -  nl n3 "'" n2j 1 

x ~b 1,2j + l(n2j+ 1) 6 ._  .2-,,4 . . . . .  2i,u 

+ 6j, o ~ tPu(nl) 6,,u (3.4) 
n l = N  

The sums over rt2i extend over all possible values of these indices since the 
walker is allowed to sit still arbitrarily long. The Kronecker deltas inside 
the sums ensure that it is exactly the nth step that brings the walker to site 
N. The last (separate) term in (3.4) accounts for walkers that arrive at N 
during the first interval. 
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The walking and stationary intervals naturally separate in Eq. (3.4) 
and can thus be treated independently. Let us therefore define for j ~> 1 

I2j (n)  ~ ~ @ 0 2 ( n 2 ) ~  I / /04(n4) ' ' "  
n 2 = 1 n4 = 1 n2j  = 1 

@o,2j(n2j) (~ . nz . . . . .  2j, N (3,5)  

and 

N i N n I - -  i N n l  . . . .  n 2 j - 3  - -  1 

m 2 j +  1 --  E I~t 11 (/'/1 ) E @13(n3) "" " E ~/1,2j-- 1 (n2j l) 
n l  = 1 n 3 = 1 n 2 j -  1 = 1 

X --- ~ ff/1,2j+ l(n2j+ l) (3.6) 
n2j+l =N nl . . . .  n 2 j - i  

Note that j must be < N  and that I2j(n) depends on n, while M2j+I does 
not. The mean first passage time to N in terms of these functions is given 
by 

N--1 
n= s ~ P2j+l(n) 

j=O n=O 
N--1 

= E M2j+I nl2j(n) +N~/N-1 
j = l  n=O 

Introducing the generating function 

(3.7) 

iv (u )=  ~ unla(n) (3.8) 
n = N  

allows us to reexpress the mean first passage time as 

N--1 d 
= E M2j+I ~uu i2j(u) + N7 N-1 (3.9) 

j = l  u = l  

With the form (3.2) in (3.5) it is a simple matter to evaluate the 
generating function (3.8) and the derivative that appears in (3.9). We find 

i 2 j (  u ) ' ~ - u N + j  F I  ( 1 -  ~)0,2i) (3.10) 

and 

d f2j(u) = N + j +  ~ 7o,2i (3.11) 
du . = 1 i= 1 1 '~0,2i 
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The evaluation of Mzj + 1 is somewhat more complicated and is most simply 
carried out in terms of the generating function 

]~2j+l(y) = ~ yNM2j+! (3.12) 
N--2 

(the explicit N dependence of M2j+ ~ has not been indicated but should be 
understood). For  this function we find 

y j+ l  J 1 - -~)1 ,2i+1 
= 1-I 1- -- yT ~-~/+, (3.13) 342J+ l(Y) 1 - Y71,zj+3 i=o 

Its inversion yields 0 for j ~> N and, for j < N, 

m2j+l (--1) j f i  i--'~1,2i+i 
~t) 1,2j + 3 i = 0  •1,2i+ 1 

X m =  0 ~)l,2m + I = ~1,2~ + 1 ~l,2k + 1' (3.14) 
k & m  

To implement the results (3.11) and (3.14), we must now assume a 
form for the ?0; and the ?v" We consider two cases: one where the slow- 
down of the walker occurs very rapidly (exponentially) and the other 
where it occurs slowly (power law). For  the former case we take 

?o,2j= 1 - e  ja (3.15a) 

71,2j+1 = e bj (3.15b) 

Thus, 7o,2j--* 1 and Y~,zj+ 1 --* 0 with increasing j. The expression (3.11) is 
straightforward to evaluate: 

ddu f&j(u) ~=~ =Nq leJa- --e -al (3.16) 

The expression for M2j+~ is more complicated: 

M2j+I- e b{j+l){j+2}/2 i=1 e xbit_ 1 (e b(k i ) - - l )  (3.17) 

k ~ i  

We evaluate (3.17) for large b (very sluggish walker) and retain only the 
leading (i = 1) contribution in the sum. We easily find that 

M2j+I,.~e-(N j a}b (3.18) 
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Equations (3.16) and (3.18) in (3.9) and retention of leading terms finally 
yields for eUa~ 1 

C Na 
~,~ N + - - -  (3.19) 

e a -  1 

with corrections of O(~e -Nb) that tend to reduce ft. The first term in (3.21) 
is the number of walking steps that the walker must  take to get to N and is 
hence a lower bound on ft. The second term is the contribution to i / from 
the idle periods. The exponential N dependence of ~ should be noted. 

Consider now a case where the slowdown of the walker is more gentle 
than in the previous example. Thus, in place of (3.15) we now take 

70,2j = 1 - a/j  (3.20a) 

~ l , 2 j +  1 = b / ( j  + 1 ) (3.20b) 

Here ?o,2j still ~ 1 and ;q,2,j+~ ~ 0 with increasing j, but more slowly than 
in (3.15). The evaluation of (3.11) is again straightforward: 

d ~f2j(u) , -  = N + j ( j  + 1____~) (3.21) 
- 1 2a 

and M2j+I is again more complicated: 

M 2 y + t = ( j + l ) ! b  u j - 1  1- -  ~ i N Y ( i - - 1 ) ! ( j - - i + l ) !  
k = l  i = 1  

(3.22) 

The sum over i is dominated by the i = 1 term for each j; for each j the 
error in taking only the leading term is of 0(2 N) smaller than the term 
retained. Thus, we write 

J 

M 2 j + ~ ( j + l ) b  N J-~ i - [ , ( l - b / k )  (3.23) 
k = l  

and consequently 

n ~  N +  ( j - - b l ) b  N j 1 1 -  + N b  n-~ (3.24) 
j = l  k = l  
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To further estimate this result explicitly, let us consider the case of 
small b as an example. The product over k can be approximated by taking 
logarithms and reexponentiating: 

FI ( b) _ b k s  In 1 - ~ ~ -b(C+lnj) (3.25) 
k = l  1 

where C =  0.57722... is Euler's constant, (7) and hence 

{ b~ e cb 1 
k = l  

(3.26) 

With this form it is easy to see that the largest value o f j  dominates the sum 
(3.24). Retaining only the leading contribution to the j = N -  1 term finally 
gives 

~ N  3 b/2a (3.27) 

In contrast with the exponential N dependence of the more sluggish walker 
(3.19), the dependence here is algebraic, albeit with a greater power than 
the linear one for a unidirectional walker who does not slow down. (s) 

4. M U L T I S T A T E  C O R R E L A T E D  W A L K S  

An alternate formulation that easily allows for the inclusion of mul- 
tiple values of k (see the Introduction) is based on functions Sk(l, n) 
defined as follows(S): 

Sk(l, n ) =  probability that the walker has not exited [ - M +  1, N - l ]  
on or before the nth step, that a switch to a walk of type k 
occurred immediately after the nth step, and that the nth step 
took the walker to site l 

These functions satisfy the set of equations 

N 1 n - - 1  

s (t, = + S q ( t ' ,  
q = - - m  l ' = - - M + I  n ' - - 0  

• (~! l ,~q(n_n,),O~tq(n--n') ( 4 . 1 )  

for - M + I  <~l<~N-1 and -m<~k<<,m. Here fl~ is the probability that 
the walker begins its walk in the direction sgn(k) with steps of length [kl, 
and we 'have assumed that a switch to this direction and step length 
occurred immediately after n = 0  (other initial conditions can also be 
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considered). The coefficient ~kq is the probability of a switch from a walk of 
type q to one of type k, and / 3 ~ -  0. This formulation is restricted to 
renewal processes, i.e., ~,q(n) does not depend on previous history. 

The Kronecker delta in Eq. (4.1) can be used to perform one of the 
sums. It is convenient to perform the sum over n' for q r 0 and the one 
over l '  for q = 0: 

Sk(l, n) = [3~ 6l, to 6,,o + t~kq Sq l', n 
q =  m l ' =  - - M + I  

q r  

X Oq 0 ~- fl#O ~ So(l, n') ~o(n--n') (4.2) 
n ' = 0  

Here O(x) is the Heaviside function, 0 ( x ) =  1 for x > 0  and O(x)=O for 
x~<0, and we have not indicated the /o dependence explicitly. It is 
convenient to define the generating function for any function of the step 
number, 

[;(u) =- ~ unF(n) (4.3) 
n = 0  

as in Eq. (2.11). Multiplying (4.2) by u n and summing over n then yields 

~( l ,  u) =/~k ~z, z0 + /~kq Y~ 0 
q =  --m l ' =  - -M+ 1 

qv~0 

Sq(l, +/~ko[~o(U)- 0o(0)3 ,~o(l, u) (4.4) 

where we have used the convention Sq(l, n) - 0 for n < 0. 
To express the probability fN(n [ 10) introduced in Section 2 in terms of 

the Sk(l, n) requires the probability 0k(n) that a walk of type k persists for 
at least n steps: 

~gk(n)= ~, 0k(n') (4.5) 
n ' = n  

In terms of these quantities, 

N - - I  t fN(nllo) = ~ S~ l, 
k = l  l=  M + I  
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The generating function for f u  satisfies the relation 

fu(U IZo) = Y~ Sk(l, u) u (u ,)/k ~k (4.7) 
k = l  l =  M + I  

Equation (4.7) together with (4.4) constitutes the formal solution of the 
problem [as does (4.6) with (4.2)]. 

As an example of the application of this formalism, consider again the 
form 

tPk(n) = (1 -- 7k) 7~ -1 for n~>l (4.8) 

with 0 < T k <  1, which is the analogue of the exponential form in the 
corresponding continuous-time problem. With this form (4.4) becomes 

1 N 1 

= Sq( l ,  u)(TqU) ~t r)/q 
q= --m 7q l '=l+ l 

1 - T q  
+ flkq 2 " ' Sq(l  , bl)(TqU) (l l')/q 

q = l  Yq l ' -  - - M + I  

1 - 7 o  
+ flko zSo(l, u) (4.9) 

1 - - 7 0  z 

To solve (4.9), it is convenient to introduce Uk(W, U), the generating 
function of Sk(1, u) with respect to l: 

N 1 

U (w, . )=  u) (4.10) 
/ = 1  

(we have chosen M = 0  in this example). Multiplying (4.2) by w t and 
summing over l leads to 

1 Z  kq(1-Tq)?/q 
q= --m 1 -- (~)qU) 1/q W 

X [(7qU) lie wUq((7qU) -l/q, u ) -  Uq(w, u)]  

Tq)/Tq 

X ~(~qbl) 1/q Uq(w, b l ) -  [(7ql,l) l/q W]N Uq((Tqbl) - l /q,  bl)] 

/ ~ o ( 1  - 70) u 
Uo(w, u) (4.11) 

1 - 7 o  u 

This is a set of 2 m +  1 linear equations easily solved using standard 
techniques. Appropriate inversion then leads to the desired first crossing 
distribution. 
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These equations can of course be specialized to the nearest neighbor 
71=7 1=7 we 

and 

(l~rT) U-l(TU'U) I ( 1 - 7 ) r ' - ( 1 - y u r ) r - / 1  (4.13) 
-~ - r  1)72u 

where 

U 1(7u, u) =7 [ (1  

r N 1 
x [2(1 - 7 )  2 u \ 1 -~Tu 

1 
*~ l(l, U)='~IS,,lo-~ 2(-~---~-r--T) 1 1 

• 1-1 r ( 7 u 2 7 - 1 )  r z + ' - / ~  

- ( 1 -  ~5-~)(1 + 7ur 727-1)rl~ 

( 1 - 7 )  2 
-~ .-~ U_l(TU, u)(r l-1 _ r  -t+*) 

72(r -- r -  i ) 
(4.14) 

7u 27 -1  27-1.) r_N+lo ] r 7 )rU '~ ~ 
r--N+ 1~1 1 

1 -7u/rJl (4.15) 

with r given in Eq. (2.22). 

walk considered in Section 2. With k = 1 and - 1  and 
obtain 

wl~ " (1--7)/7[ - w/Tu -~ 1 UI(W , U) = T - I -  U 1(7/~/, 12)-- U I(W , bl) 

[ ( 1 ) ]  , wl o . (1-7)/7 wTugl(w, u)-(w7u) N UI -~ u (4.12) 
U-I(W' b l ) = T [  1 -- wTu 

where we have set fll,-1 =fl 1,1 = 1 and f l l=fl_l  = 1/2. Solution of these 
simultaneous equations and inversion of the/-generating functions yields 

O(l-lo) [( 7u~(27--11)rl+l_lo 
$1(I, u)= art0+ 2(r_ r_l) 1 - 

' r } \  7 rTu 



Correlated Random Walks 219 

The mean number of steps for first arrival at l = 0 or l = N is obtained 
from these quantities via Eq. (2.3). We find that 

fN(UlIo)+fo(UIIo)=(uT)NUI(1/UT, u )+U I(U~',U) (4.16) 

[note that the average over the initial direction of the walk was here incor- 
porated from the outset when we chose f l l= f l_ l= l /2  in (4.11)]. A 
derivative of (4.16) with respect to u evaluated at u = 1 yields the mean first 
passage time (2.24) with M =  0. 

5. C O N C L U S I O N  

We have presented two methods for dealing with correlated random 
walks on discrete lattices and, in particular, for calculating the mean first 
passage time ~ of such walkers out of a specified interval of length N. One 
method is based on an explicit classification of trajectories and allows us to 
deal with walks whose progress is described by a random variable that 
need not be a Markov process and that need not even by stationary. Thus, 
we can deal with walks in which the nature of the walk is history depen- 
dent. This method is practical only for nearest neighbor correlated walks. 
As examples we consider a nearest neighbor correlated walk of the usual 
form ( ~ N 2 ) ,  a unidirectional walk in which the walker "slows down" 
exponentially as the walk proceeds (n ~ eNa), and one where the "slowing" 
is algebraic ( ~  N 3 b, b,~ 1). The second method allows us to deal with 
non-nearest (but history-independent) correlated walks. We have restricted 
our examples to those we can handle analytically, but point out that these 
methods are well suited to numerical solution for more complicated walks. 
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